LLMs for Low Resource Languages in Multilingual, Multimodal and Dialectal Settings

https://llm-low-resource-lang.github.io

EACL 2024, 21th March, 2024

Speakers

Firoj Alam Scientist

Shammur Chowdhury Scientist

Sabri Boughorbel Scientist

Maram Hasanain Post Doctoral Researcher

Qatar Computing Research Institute

Content

- Introduction [20 mins]
- Models and their capabilities for low-resource languages [70 mins]
 - NLP models [40 mins]
 - Multimodality [25 mins]
 - Overview
 - Multimodality
 - Speech
 - QA [5 mins]
- Coffee break [30 mins]
- Prompting + Benchmarking Tool [60 mins]
 - Prompt Engineering [40 mins]
 - Prompting techniques
 - Cross-/multi-lingual prompting
 - Prompt and Benchmarking tools [15 mins]
 - QA: [5 mins]
- Other Related Aspects [20 mins]

Models and their Capabilities for Low-Resource Languages

LLMs for Text Input

Pretraining

QATAR COMPUTING RESEARCH INSTITUTE

Source: https://undefined.photos/photo-gallery/a-sentence-that-has-the-word-predict-in-it

Instruction Tuning

QATAR COMPUTING RESEARCH INSTITUTE

Source: https://lightning.ai/pages/community/finetuning-falcon-efficiently/

Instruction Tuning

Different Scenarios

Scenarios	Data requirement	Compute requirement
Training from scratch + fine-tuning	++++	++++
Further pretraining + fine-tuning	+++	++
Fine-tuning existing LLM	+	+

Multilingual LLMs

https://medium.com/grabngoinfo/how-to-access-llama-2-free-generative -ai-llm-alternative-to-chatgpt-api-359569b27c3a

LLM Training Pipeline

Alignement

BLOOM

- From BigScience consortium
- Model family: 560m, 1.7B, 3B, 7B, 176B
- Instruction-tuned: BLOOMZ using xP3
- Training data (ROOTS corpus)
 - 498 Hugging Face datasets
 - 46 languages
 - 13 programming languages
 - 350B tokens
 - 250K vocabulary size tokenizer

https://huggingface.co/bigscience/bloom-7b1

BLOOM

- BLOOM-176B performance in English is not at expectation but smaller version could
- It can be useful for low resource language
 - 60% of its data in non-English
 - example of fine-tuned bloom-7b:

phoenix-chat-7b

InstructGPT davinci v2 (175B*) TNLG v2 (530B) Anthropic-LM v4-s3 (52B) OPT (175B) Cohere xlarge v20220609 (52.4B) 11-Jumbo v1 (178B) GPT-3 davinci v1 (175B) GLM (130B) **OPT** (66B) **BLOOM** (176B) [1-Grande v1 (17B) Cohere large v20220720 (13.1B) GPT-NeoX (20B) [1-Large v1 (7.5B] InstructGPT curie v1 (6.7B*) TNLG v2 (6.7B) GPT-3 curie v1 (6.7B) GPT-1 (6B) Cohere medium v20220720 (6.1B) InstructGPT babbage v1 (1.3B*) UL2 (20B) T0pp (11B) T5 (11B) YaLM (100B) GPT-3 babbage v1 (1.3B) GPT-3 ada v1 (350M) InstructGPT ada v1 (350M*) Cohere small v20220720 (410M)

Accuracy 1

BLOOM

bloom									
Model 🔺	Language 🔺	Code	Average 🔻	ARC (25-shot)	HellaSwag (0-shot)	MMLU (25-shot)			
bloom-7b1	French	fr	41	36.7	56.6	29.9			
bloom-7b1	Spanish	es	41	38.1	56.7	28.9			
bloom-7b1	Portuguese	pt	40.7	40	55.1	28.8			
bloom-7b1	Chinese	zh	39.1	37.3	51.2	29.1			
bloom-7b1	Catalan	са	38.7	34.7	51.2	28.8			
bloom-7b1	Vietnamese	vi	38.7	33.7	48.3	28.1			
bloom-7 <mark>b1</mark>	Indonesian	id	38.5	36	49.5	28.1			
bloom-7b1	Arabic	ar	36.2	31.4	43.3	27.5			
bloom-7b1	Italian	it	35.3	29	40.8	27.6			
bloom-7b1	Hindi	hi	34.4	29.2	36.4	27.5			

- Trained on 638B tokens in two sizes 1.7B and 13B
- Tokenizer: vocabulary size is 256K
 - Reduced bias towards high resource language by increasing vocab size of LRL

Source	Fraction	Tokens	Туре
mC4	49.95%	321.7B	Web-text (Multilingual)
CC-100	32.31%	208.1B	Web-text (Multilingual)
The Pile	e16.41%	105.7B	Web-text & books (English)
GitHub	1.17%	7.5B	Code
OPUS	0.16%	1.0B	Parallel Multilingual Data
Sum	-	638B	

Polylm: An open source polyglot large language model (Wei, et al., 2024)

- Curriculum Learning:
 - Increased non-English data 30% to 60%
- Bilingual data into training data;

Polylm: An open source polyglot large language model (Wei, et al., 2024)

Polylm: An open source polyglot large language model (Wei, et al., 2024)

- SeaLLMs Large Language Models for Southeast Asia:
 - Thai, Vietnamese, Indonesian, Chinese, Khmer, Lao, Malay, Burmese, Ο and Tagalog Pre-training and SFT data composition
- Base model: Llama-2-13B
- Extended vocabulary: 16K

Llama-2

Pre-training SFT

SeaLLMs--Large Language Models for Southeast Asia. (Nguyen, Xuan-Phi, et al. 2023).

Continual

Pre-training

eng zho

https://github.com/DAMO-NLP-SG/SeaLLMs

SeaLLM

• Vocabulary expansion

- Exhaustive Merge
- Pruning low frequency

- Pretraining
 - Different languages into a single training sequence
 - high-quality documents for each language -> lower quality
 - -> high-quality

• Pre-training and SFT Hybrid

- pre-training corpus, labeled data from traditional NLP tasks, and significant quantities of open-source instruction-following data
- SFT
 - native-language data, selective translation, self-instruction

SeaLLM

Model		MMLU				
	Eng	Zho	Vie	Ind	Tha	Eng
ChatGPT-3.5	75.46	60.20	58.64	49.27	37.41	70.00
Llama-2-7b Llama-2-13b Polylm-13b	49.58 61.17 32.23	37.58 43.29 29.26	29.82 39.97 29.01	28.93 35.50 25.36	19.89 23.74 18.08	45.62 53.50 22.94
SeaLLM-7b SeaLLM-13b-5L SeaLLM-13b-10L	54.89 63.20 62.69	39.30 45.13 44.50	38.74 49.13 46.45	32.95 40.04 39.28	25.09 36.85 36.39	47.16 55.23 52.68

Colossal-LLaMA-2-7B

- Continual pre-training of 8.5 billion tokens over a duration of 15 hours with 64 A800 GPUs (<\$1,000)
- Vocabulary size: 32,000 to 69,104
- High quality data

Colossal-LLaMA-2-7B

https://github.com/hpcaitech/ColossalAI

Model	Backbone	Tokens Consumed	MMLU (5-shot)	CMMLU (5-shot)	AGIEval (5-shot)	GAOKAO (0-shot)	CEval (5-shot)
Baichuan-7B	-	1.2T	42.32	44.53	38.72	36.74	42.8
ChatGLM2-6B	-	1.4T	44.74	49.40 (-)	46.36	45.49	51.7
Qwen-7B	-	2.2T	54.29	56.03	52.47	56.42	59.6
Llama-2-7B	-	2.0T	44.47	32.97 (-)	32.6	25.46	-
Linly-Al/Chinese-LLaMA-2-7B-h f	Llama-2-7B	1.0T	37.43	29.92	32	27.57	-
FlagAlpha/Atom-7B	Llama-2-7B	0.1T	49.96	41.1	39.83	33	-
IDEA-CCNL/Ziya-LLaMA-13B-v 1.1	Llama-13B	0.11T	50.25	40.99	40.04	30.54	-
Colossal-LLaMA-2-7b-base	Llama-2-7B	0.0085T	53.06	49.89	51.48	58.82	50.2
Colossal-LLaMA-2-13b-base	Llama-2-13B	0.025T	56.42	61.8	54.69	69.53	60.3

Instruction-tuned mT5 (13B)

- 101 languages of which over 50% are considered as lower-resourced
- 250k vocabulary size
- Evaluation suites for 99 languages
- Instruction datasets are open sourced

Group	Category	Languages	Examples
Higher-Resourced	$5\\4$	$7\\17$	Arabic, Chinese, English, French, Spanish Hindi, Italian, Portuguese, Russian, Turkish
Mid-Resourced	3	24	Afrikaans, Indonesian, Kazakh, Latin, Latvian
Lower-Resourced	$\begin{array}{c} 2\\ 1\\ 0 \end{array}$	11 29 13	Hausa, Icelandic, Irish, Lao, Maltese Albanian, Gujarati, Igbo, Luxembourgish Kurdish, Kyrgyz, Nyanja, Sinhala, Yiddish

Finetuning Evaluation Multilingual templates Zero-shot unseen tasks 99 xP3x (11) XCOPA 61 ¥ Aya Collection (15 XNLI 10 14 Data Provenance Collection XStoryCloze 6 XWinograd Human annotation 5-shot unseen datase 🔮 Aya Dataset Ava 64 MMLU (translated) 28 Automatic translation Model In-distribution evaluation 93 Flan Collection 93 FLORES 93 Dolly-15k 45 XLSum 93 Mintaka 11 Tvdi-QA Synthetic data generation Open-ended generation ShareGPT-Command Human evaluation 10 GPT-4 simulated win-rate Instruction finetuning example Safety Promp Toxicity detection What day is followed by Saturday? larmfulness for adversarial prompt Completion Open-ended generation toxicit Saturday is followed by Sunday. Gender bias in machine translatio

Aya

			Held out tasks (Accuracy %)						
Model	Base Model	IFT Mixture	XCOPA	XNLI	XSC	XWG	Avg		
46 LANGUAGES									
мT0 BLOOMZ	mT5 13B BLOOM 176B	xP3 xP3	$\begin{array}{c} 75.6 \\ 64.3 \end{array}$	$\begin{array}{c} 55.3 \\ 52.0 \end{array}$	$\begin{array}{c} 87.2\\ 82.6\end{array}$	$\begin{array}{c} 73.6\\ 63.3 \end{array}$	$\begin{array}{c} 72.9 \\ 65.5 \end{array}$		
52 LANGUAGES									
BACTRIAN-X 13B	Llama 13B	Bactrian-X	52.4	34.5	51.8	50.5	47.3		
101 LANGUAGES									
MTOX Aya (human-anno-heavy) Aya (template-heavy) ★Aya (translation-heavy)	mT5 13B mT5 13B mT5 13B mT5 13B	xP3x All Mixture All Mixture All Mixture	71.7 76.5 77.3 76.7	45.9 59.2 58.3 58.3	85.1 89.3 91.2 90.0	60.6 70.6 73.7 70.7	65.8 73.9 75.1 73.9		

Aya

	arb	cat	deu	eus	fra	hin	hrv	hun	ita	nld	por	rud	ser	spa	swe	vie
Okapi‡	27.7	30.5	31.7	27.9	30.7	26.5	30.0	30.1	30.4	31.1	30.1	30.6	30.4	30.9	29.3	27.5
мТ0	31.5	32.8	32.7	29.7	32.1	32.0	31.1	32.3	32.4	32.0	32.1	32.8	30.9	32.1	31.6	30.9
мТ0х	31.6	32.6	32.5	29.2	32.7	31.6	31.1	31.7	31.3	32.1	32.0	31.7	31.4	32.2	32.8	31.1
Aya	38.2	39.6	39.7	36.0	39.7	38.7	37.5	38.8	39.0	40.1	39.0	39.2	38.1	39.7	39.7	34.8
	zho	ben	dan	ind	ron	slk	tam	ukr	guj	hye	kan	mal	mar	npi	tel	Avg
Okapi [‡]	28.2	26.8	31.8	27.5	30.9	30.2	26.0	31.6	27.4	27.5	26.8	25.8	26.1	25.2	25.9	28.8
мТ0	32.5	31.6	33.0	33.3	32.4	32.3	29.4	31.5	29.5	28.4	30.9	28.6	31.6	32.4	29.0	31.5
мТ0х	31.6	30.2	32.0	32.3	31.8	31.4	27.7	32.3	28.5	26.7	28.9	26.7	29.7	30.1	27.9	30.8
Aya	38.3	35.8	39.7	40.0	39.5	39.4	31.2	39.9	33.6	30.0	34.5	30.4	36.0	37.2	32.1	37.3

https://www.datacamp.com/tutorial/fine-tuning-llama-2

Pre-training Data

Multi-Source Corpora

Pretraining Datasets

- Multilingual datasets
 - Common Crawl, mC4, OSCAR, CulturaX
- Creating own dataset using data preparation pipelines
 - RedPajama
 - Dolma
- Machine translation for data augmentation

Common Crawl

- Open repository of web crawl data
- Petabytes of data, regularly collected since 2008
 - 250 billion pages over 17 years
 - 3-5 billion new pages added each month
 - In June 2023, 3 billion web pages and ~400 TB of uncompressed data.

OSCAR

- Open Super-large Crawled Aggregated coRpus
- 151 different languages (12GB multilingual corpus)
- It has been used to train known models, e.g., BART
- Moved from line-oriented to documented-oriented
- Added Annotations:
 - Length-based
 - Noise detection (ratio letters/non-letters, unicode categories)
 - Adult content

OSCAR

https://oscar-project.org/

Annotation count

Towards a cleaner document-oriented multilingual crawled corpus (Julien, et al., 2022)

mC4: Multilingual C4

- Multilingual Colossal, Cleaned version of Common Crawl's web crawl corpus
- mC4 has been used to train Google's mT5 model
- 2.7T tokens English, 3.6T tokens multilingual
- Language identification using CLD3

CulturaX

- Combines: mC4 and OSCAR
 - 6.3B tokens
 - 167 languages
- Extensive cleaning and deduplication
 - Language Identification: FastText identification on mC4
 - URL-based Filtering
 - Metric-based Cleaning:
 - MinHash & URL-based Deduplication

OSCAR 23.01

OSCAR 22.01

OSCAR 21.09

9%

OSCAR 20.19

7%

RedPajama

- Open source dataset with two versions
- English-centric dataset
- Llama dataset clone
 - same performance over 20 benchmarking datasets

	RedPajama	LLa <mark>MA*</mark>
CommonCrawl	878 billion	852 billion
C4	175 billion	190 billion
Github	59 billion	100 billion
Books	26 billion	25 billion
ArXiv	28 billion	33 billion
Wikipedia	24 billion	25 billion
StackExchange	20 billion	27 billion
Total	1.2 trillion	1.25 trillion

Task/Metric	GPT-J 6B	LLaMA 7B	LLaMA 13B	OpenLLaMA 3Bv2	OpenLLaMA 7Bv2	OpenLLaMA 3B	OpenLLaMA 7B	OpenLLaMA 13B
Average	0.52	0.55	0.57	0.53	0.56	0.53	0.55	0.57

RedPajama V2

- 84 CommonCrawl snapshots
- Processed using the CCNet pipeline
- Quality Signals (>40 quality signals)
- Deduplication
- Open source pipeline
- Interesting direction:
 - multilingual RedPajama

	# Documents	Estimated Token count (deduped)
en	14.5B	20.5T
de	1.9B	3.0T
fr	1.6B	2.7T
es	1.8B	2.8T
it	0.9B	1.5T
Total	20.8B	30.4T

Dolma

Dolma

Source	Doc Type	UTF-8 bytes (GB)	Documents (millions)	Unicode words (billions)	Llama tokens (billions)
Common Crawl	🌒 web pages	9,022	3,370	1,775	2,281
The Stack	> code	1,043	210	260	411
C4	🌐 web pages	790	364	153	198
Reddit	ᆋ social media	339	377	72	89
PeS2o	🞓 STEM papers	268	38.8	50	70
Project Gutenberg	📃 books	20.4	0.056	4.0	6.0
Wikipedia, Wikibooks	encyclopedic	16.2	6.2	3.7	4.3
Total		11,519	4,367	2,318	3,059

Dolma: an Open Corpus of Three Trillion Tokens for Language Model Pretraining Research, L. Soldaini et al , 2024

Dolma

Data Augmentation

- 200 languages
- Sparsely Gated Mixture of Experts
- Trained on data tailored for low-resource languages
- 44% BLEU relative to the previous state-of-the-art
- Variants: distilled-600M, 1.3B, distilled-1.3B, 3.3B, moe-54B

MADLAD

- MADLAD-400 is a multilingual machine translation model based on the T5 architecture
- Trained on 250 billion tokens covering over 450 languages using publicly available data.
- MADLAD variants: 3B, 7B and 10B

Continent	# Languages
Asia	149
Americas	66
Africa	87
Europe	89
Oceania	26
Constructed	2

Limitations of Data Augmentation

- Accuracy of Machine Translation varies by content
- Risks of distortion of the semantic using Machine Translation
- Could carry model bias into augmented data
- Copyright restriction on LLM generated data

Instruction-Tuning

Data

https://www.datacamp.com/tutorial/fine-tuning-llama-2

Instruction-Tuning Datasets

• Bactrian-X:

- 3.4M pairs of instructions and responses in 52 languages
- alpaca-52k, and dolly-15k translated into 52 languages using gpt-3.5-turbo

- MBZUAI/bactrian-x-llama-7b-lora
- MBZUAI/bactrian-x-llama-13b-lora
- MBZUAI/bactrian-x-bloom-7b1-lora

Instruction Tuning Datasets

Dataset	#Instances	#Langs	% English	Generation method	Permissive license
Llama2 IFT data [Touvron et al., 2023]	NA	27	90%	Human-annotations SFT datasets	×
Alpaca [Taori et al., 2023]	52K	1	100%	Synthetic data generation IFT datasets	\approx
P3 [Sanh et al., 2022]	12M	1	100%	Template generation given applied to En- glish datasets	1
Flan 2022 [Longpre et al., 2023a]	$15\mathrm{M}$	60	100%	Template generation applied to English datasets	\checkmark
xP3 [Muennighoff et al., 2023c]	81M	46	39%	Template generation applied to English datasets	\checkmark
Sweinstruct [Holmström & Doostmohammadi, 2023]	68K	1	0%	Machine translation English IFT datasets	~
Okapi [Dac Lai et al., 2023]	158K	26	45%	Machine translation English IFT datasets	1
Bactrian-X [Li et al., 2023a]	$3.4\mathrm{M}$	52	2%	Machine translation $+$ synthetic data generation	~
Aya Dataset	$204 \mathrm{K}$	65	2%	Original IFT Human-annotations	1
Aya Collection	513M	114	3.5%	Template Generation and translating ex- isting datasets	1

Aya Dataset

Data Card for the Aya Dataset

The Aya Dataset is a multilingual instruction fine-tuning dataset curated by an open-science community. The dataset contains a total of 204,114 annotated prompt-completion pairs.

- Curated by: 2,007 contributors from 110 countries
- Language(s): 65 languages
- License: Apache 2.0
- Repository: https://huggingface.co/datasets/CohereForAI/aya_dataset

Authorship

Publishing Organization: Cohere For AI

Industry Type: Not-for-profit - Tech Contact Details: https://aya.for.ai/

Example of Data Points

The dataset contains multilingual prompts and completions in the following format: {prompt: "What day is followed by Saturday?", completion : "Saturday is followed by Sunday.", language: "English" }

Aya Collection

Data Card for the Aya Collection

The Aya Collection incorporates instruction-style templates from fluent speakers and applies them to a curated list of 44 datasets. It also includes translations of 19 instruction-style datasets into 101 languages. This collection provides 513,579,625 instances of prompts and completions covering a wide range of tasks..

- Curated by: 2007 contributors from 110 countries
- Language(s): 114 languages
- License: Apache 2.0
- Repository: https://huggingface.co/datasets/CohereForAI/aya_collection

Authorship

Publishing Organization:Industry Type:ContactCohere For AINot-for-profit - Techhttps://

Contact Details: https://aya.for.ai

Example of Data Points

The dataset contains multilingual prompts and completions in the following format: {'prompt': "Generate an article for the given headline: {{headline}}", 'completion': "{{news_article}}", 'lang': "English" }

Aya Annotation Platform

(a) Example of an original annotation contribution.

(b) Example of a re-annotation contribution.

Aya Annotation Platform

Figure 15: The average length of prompts and completions for high (HR), medium (MR) and low-resource (LR) languages in Aya Collection.

Multimodal LLMs

You

М

Generate a fun meme about multimodal LLMs like yourself

DALL-E

77

Why we need multimodal?

- Real World Environment inherently multimodal
- Utilization of Diverse channel: speech, sound, vision, touch among others for *better* knowledge acquisition

Why we need multimodal?

- The high-quality representation present in pretrained (uni)modal **Foundation models**
- The cognitive power of **LLMs**
- To empower various **MM tasks**

Harness the power of Multimodal LLMs for better understanding, reasoning and generation capabilities!

Capabilities and Modalities

Core tasks MMLLMs focus on are:

Understanding

- Image + Text \rightarrow Text
- Video + Text \rightarrow Text
- Audio/Speech + Text → Text
- $3D + Text \rightarrow Text$
- Many \rightarrow Text

Generation

- Image + Text \rightarrow Image + Text
- Speech/Audio + Text →
 Speech/Audio + Text
- Many \rightarrow Image + Text
- Many \rightarrow Many

Why we need multimodal?

- Multimodal LLMs (MMLLMs) harness
 - The high-quality representation present in pretrained unimodal Foundation models
 - The cognitive power of **LLMs**
 - To empower various **MM tasks**
- Core Challenge: How to <u>connect</u> the LLM with other modalities for

understanding and generation capabilities?

Refining Alignment between different Modalities and the Text-LLMs!

Overview of MMLLMs

MM-LLMs: Recent advances in multimodal large language models (Zhang, Duzhen, et al. arXiv 2024)

Research on MMLLMs

Understanding

I+T→T: BLIP-2 (Li et al., 2023e), Kosmos-1 (Huang et al., 2023c), PaLM-E (Driess et al., 2023), ViperGPT (Surís et al., 2023), LLaVA (Liu et al., 2023e), MiniGPT-4 (Zhu et al., 2023a), mPLUG-Owl (Ye et al., 2023b), Otter (Li et al., 2023b), MultiModal-GPT (Gong et al., 2023), PandaGPT (Su et al., 2023), PaLI-X(Chen et al.) LLaVA-Med (Li et al., 2023d), LLaVAR (Zhang et al., 2023h), mPLUG-DocOwl(I_D) (Ye et al., 2023a), DLP (Jian et al., 2023), ChatSpot (Zhao et al., 2023b), OpenFlamingo (Awadalla et al., 2023), Chinese-LLaVA (LinkSoul-AI., 2023), ASM (Wang et al., 2023c), BLIVA (hu2, 2023), IDEFICS (IDEFICS, 2023), Owen-VL (Bai et al., 2023b), Kosmos-2.5 (Lv et al., 2023), InternLM-XComposer (Zhang et al., 2023f), JAM (Aiello et al.), LLaVA-1.5 (Liu et al., 2023d), MiniGPT-v2 (Chen et al., 2023d), Fuyu-8B (Bavishi et al., 2023), CogVLM(Wang et al., 2023b), mPLUG-Owl2 (Ye et al., 2023c), Monkey (Li et al., 2023l), Volcano (Lee et al., 2023), DRESS (Chen et al., 2023i), LION (Chen et al., 2023c), DocPedia(**I**_D) (Feng et al., 2023), ShareGPT4V(Chen et al., 2023f), VIM (Lu et al., 2023b), mPLUG-PaperOwl(I_D)(Hu et al., 2023a), RLHF-V (Yu et al., 2023b), Silkie (Li et al., 2023g), Lyrics (Lu et al., 2023a), VILA (Lin et al., 2023), CogAgent (Hong et al., 2023), Osprey (Yuan et al., 2023a), V* (Wu and Xie, 2023), MobileVLM (Chu et al., 2023a), TinyGPT-V (Yuan et al.), DocLLM(I_D) (Wang et al., 2023a), LLaVA- ϕ (Zhu et al., 2024c), Yi-VL(Team., 2023) KAM-CoT(Mondal et al.), InternLM-XComposer2 (Dong et al., 2024b), MoE-LLaVA (Lin et al., 2024a), LLaVA-MoLE (Chen et al., 2024), LLaVA-NeXT (Liu et al., 2024b), VLGuard (Zong et al., 2024), MobileVLM V2 (Chu et al., 2024), ViGoR(Yan et al., 2024), VisLingInstruct (Zhu et al., 2024b) V+T \rightarrow T: VideoChat (Li et al., 2023f), Video-ChatGPT (Maaz et al., 2023), Dolphins (Ma et al., 2023) $A+T \rightarrow T$: SALMONN (Tang et al., 2023a), Owen-Audio (Chu et al., 2023b) **3D+T** \rightarrow **T:** 3DMIT (Li et al., 2024b) Many \rightarrow T: Flamingo (Alayrac et al., 2022), MM-REACT (Yang et al., 2023b), X-LLM (Chen et al., 2023b) InstructBLIP (Dai et al., 2023), EmbodiedGPT (Mu et al., 2023), Video-LLaMA (Zhang et al., 2023e), Lynx (Zeng et al., 2023), AnyMAL(Moon et al., 2023), LanguageBind (Zhu et al., 2024a), LLaMA-VID (Li et al., 2023j), X-InstructBLIP (Panagopoulou et al., 2023), InternVL (Chen et al., 2023j)

Generation

I+**T**→**I**+**T**: FROMAGe(**I**_{**R**}) (Koh et al., 2023b), Visual ChatGPT (Wu et al., 2023a), DetGPT(**I**_{**B**})(Pi et al., 2023) GILL(Koh et al., 2023a), Kosmos-2(**I**_{**B**}) (Peng et al., 2023), Shikra(**I**_{**B**}) (Chen et al., 2023e), GPT4ROI(**I**_{**B**}) (Zhang et al., 2023g), SEED (Ge et al., 2023), LISA(**I**_{**M**}) (Lai et al., 2023), VisCPM(Hu et al., 2023b), CM3Leon(Yu et al., 2023a), LaVIT (Jin et al., 2024), DreamLLM (Dong et al., 2024a), MiniGPT-5 (Zheng et al., 2023b), Kosmos-G (Pan et al., 2023), GLaMM(**I**_{**M**}) (Rasheed et al., 2023), LLaVA-Plus(+**I**_{**B**}&**I**_{**M**}) (Liu et al., 2023f), PixelLM(**I**_{**M**}) (Ren et al., 2023), VL-GPT (Zhu et al., 2023b), CLOVA(+**I**_{**B**}&**I**_{**M**}) (Gao et al., 2023b), Emu-2 (Sun et al., 2023a), MM-Interleaved (Tian et al., 2024), DiffusionGPT (Qin et al., 2024), RPG(Yang et al., 2024), Vary-toy(**I**_{**B**}) (Wei et al., 2024), CogCoM(**I**_{**B**}) (Qi et al., 2024), SPHINX-X(**I**_{**B**}) (Gao et al., 2024) **A/S+T**→**A/S+T**: SpeechGPT (Zhang et al., 2023a), AudioPaLM (Rubenstein et al., 2023) **Many**→**I+T**: Emu (Sun et al., 2024), BuboGPT(**I**_{**M**}) (Zhao et al., 2023d), GroundingGPT(**I**_{**B**}) (Li et al., 2024c) **Many**→**Many**: GPT-4 (OpenAI, 2023), HuggingGPT (Shen et al., 2023), AudioGPT (Huang et al., 2023b) NExT-GPT (Wu et al., 2023d), ControlLLM (Liu et al., 2023i), TEAL (Yang et al., 2023a), CoDi-2(Tang et al.) Gemini (Team et al., 2023), ModaVerse (Wang et al., 2024c), MLLM-Tool(Wang et al., 2024a)

Examples MMLLMs

• Gemini Family

- \bigcirc Image, Speech, Video, Text understanding \rightarrow Outputs: Text and Image
- Ultra: State-of-the-art performance in wide variety of complex tasks (e.g. reasoning) and multimodal tasks.
- *Pro*: Enhanced for performance and deployability at scale.
- *Nano* (1.8B and 3.25B): on-device application
- ChatGPT/GPT-4V
 - \bigcirc Image, Speech, Text understanding \rightarrow Outputs: Text, Image, Speech
 - Speech: Whisper Model (transcription) [Closed Information]

Gemini: a family of highly capable multimodal models. (Team, Gemini, et al., arXiv 2023) ChatGPT can now see, hear, and speak (<u>https://openai.com/blog/chatgpt-can-now-see-hear-and-speak</u>) The dawn of LLMs: Preliminary explorations with gpt-4v(ision). (Yang, Zhengyuan, et al. arXiv 2023)

Examples MMLLMs

Text

MM1 Family

- Image, Text understanding Ο
- 3B, 7B to 30B, 3BX64 to 7BX32 MOE Ο
- Multi-image reasoning capability Ο
- **NextGPT**
 - Any-to-Any Modality, Semantic Ο understanding and reasoning
 - Text, Images, Videos, and Audios Ο
 - LLM Vicuna (7B) [LoRA 33M] Ο

MM1: Methods, Analysis & Insights from Multimodal LLM Pre-training. (McKinzie, Brandon, et al. arXiv 2024) Next-gpt: Any-to-any multimodal IIm (WU, Shengqiong, et al. arXiv 2023)

AnyGPT: Unified Multimodal LLM with Discrete Sequence Modeling. (Zhan, Jun, et al. arXiv 2024) SpeechGpt: Empowering large language models with intrinsic cross-modal conversational abilities. (Zhang, Dong, et al. arXiv 2023)

Examples MMLLMs

What is the capital of

French?

(What is your name?)

Please read the sentence:

Today is a beautiful day.

Record the content:

- AnyGPT
 - Any-to-Any Modality
 - Discrete Tokens representation
 - O LLM LLaMA-2 7B
- SpeechGPT 🚽
 - Speech/Text \rightarrow Speech/Text
 - Discrete Tokens representation
 - Spoken dialogue following ability

 \mathbf{X}

MMLLMs Architectures

Most widely adapted MMLLMs Model Architectures:

★ Modality Encoder
 ★ LLM as Backbone
 ★ Modality Generator

Representation Learning → *Continuous modality representation* or *Discrete token representation*

MMLLM Architectures: Continuous Representation

General Overview

MM-LLMs: Recent advances in multimodal large language models (Zhang, Duzhen, et al. arXiv 2024)

Multimodal Alignment: Next-GPT Continuous Representation

Next-gpt: Any-to-any multimodal IIm (WU, Shengqiong, et al. arXiv 2023)

Multimodal Instruction Tuning: Next-GPT Continuous Representation

But can the model understand and follow instruction??

Modality-switching Instruction Tuning

Next-gpt: Any-to-any multimodal IIm (WU, Shengqiong, et al. arXiv 2023)

MMLLMS: Discrete Representation

Convert continuous representation to discrete tokens of fixed vocabulary size.

AnyGPT: Unified Multimodal LLM with Discrete Sequence Modeling. (Zhan, Jun, et al. arXiv 2024) Gemini: a family of highly capable multimodal models. (Team, Gemini, et al., arXiv 2023)

91

MMLLM Architectures: Gemini (closed) Discrete Representation

Gemini: a family of highly capable multimodal models. (Team, Gemini, et al., arXiv 2023)

Gemini: a family of highly capable multimodal models. (Team, Gemini, et al., arXiv 2023)

MMLLM Architectures: AnyGPT Discrete Representation

AnyGPT: Unified Multimodal LLM with Discrete Sequence Modeling. (Zhan, Jun, et al. arXiv 2024)

Modality-based Tokenizers (e.g. Speech)

SpeechTokenizer: Unified Speech Tokenizer for Speech Language Models. (Zhang, Xin, et al. 2024)

Modality-based Tokenizers (e.g. Speech)

SpeechTokenizer: Unified Speech Tokenizer for Speech Language Models. (Zhang, Xin, et al. 2024) High fidelity neural audio compression. (Défossez, Alexandre, et al. arXiv 2022)

MMLLM Architectures: AnyGPT

AnyGPT: Unified Multimodal LLM with Discrete Sequence Modeling. (Zhan, Jun, et al. arXiv 2024)
Modality Encoders

Essence of adding MM in LLMs: Insert modality knowledge effectively

Visual Modality

NFNet-F6
ViT
CLIP ViT
Eva-CLIP ViT

Multilingual Capabilities!

MM-LLMs: Recent advances in multimodal large language models (Zhang, Duzhen, et al. arXiv 2024) ML-SUPERB: Multilingual speech universal performance benchmark (Shi, Jiatong, et al. arXiv 2023)

Modality Encoders: Whisper

- Multitask training (680K hours)
 - Speech transcription (multilingual), Speech translation

(X \rightarrow En) and Language Identification

Hours of translated audio

Robust speech recognition via large-scale weak supervision.(Radford, Alec, et al. ICML 2023)

Modality Encoders: USM

- Universal Speech Model (USM)
 - Speech: 12M hours for 300 languages YT unlabeled data, 429k hours, 51 languages, unlabeled public datasets
 - Text: 2B sentences, 1140 languages

- Paired Data (Speech, Text):
 - 100k hours, ~100 languages
 - 100k hours en-US pseudo-labeled
 - 10k hours multi-domain en public data

Google usm: Scaling automatic speech recognition beyond 100 languages. (Zhang, Yu, et al. arXiv 2023)

Whisper vs USM

Overall performance comparison: ASR Tasks

Task	Multilingual Long-form ASR			orm ASR	Multidomain en-US Multilingual AS		
Dataset	YouTube		CORAAL	SpeechStew	FLEURS		
Langauges	en-US	18	73	en-US	en-US	62	102
Prior Work (single model)							
Whisper-longform	17.7	27.8	-	23.9	12.8		
Whisper-shortform [†]	-	_	-	13.2 [‡]	11.5	36.6	-
Our Work (single model)							
USM-LAS	14.4	19.0	29.8	11.2	10.5	12.5	-
USM-CTC	13.7	18.7	26.7	12.1	10.8	15.5	-)

Google usm: Scaling automatic speech recognition beyond 100 languages. (Zhang, Yu, et al. arXiv 2023)

Whisper vs USM

Low-resource Setting: Standard Arabic vs Dialects and Domain (ASR)

				Biling Confe	ual (EN, AR) ormer ASR	Dataset dom./dial.	Models	Zero-Shot	N-Shot (2hrs)	SOTA
	Dataset dom./dial.	Models	Zero-Shot	N-Shot (2hrs)	SOTA		W.S	63.60 48.90	-	0:23.4
Standard Arabic	→ High-resource MGB2	W.S W.M	46.70 33.00	36.8	O: 11.4	Broadcast/Mixed	W.M W.Lv2 USM	37.90 27.80	31.2+ <i>N/A</i>	S: 24.90
	Broadcast/MSA	W.Lv2 USM	26.20 15.70	18.8 <i>N/A</i>	S:11.9	DACS	W.S W.M	61.90 48.70	-	O: 15.9
EGY dialectal A	rabic $ ightarrow$ Mid-resourc MGB3	e W.S W.M	83.20 65.90	77.5	O: 21.4	Broadcast MSA-EGY	W.Lv2 USM	34.20 14.30	30.4+ <i>N/A</i>	S: 21.3
-	Broadcast/EGY	W.Lv2 USM	55.60 22.10	44.6 <i>N/A</i>	S: 26.70	ESCWA.CS	W.S W.M	101.50 69.30	-	O: 49.8
MOR dialectal A	rabic $ ightarrow$ Low-resourd MGB5	W.S W.M	135.20 116.90	114.6 -	O: 44.1	Meeting/Mixed	W.Lv2 USM	60.00 45.70	53.6+ <i>N/A</i>	S:48.00
	Broadcast/MOR	W.Lv2 USM	89.40 51.20	85.5 N/A	S:49.20	CallHome Telephony/EGY	W.S W.M W.Lv2	155.90 113.70 78.70	152.9 - 64.6	O: 45.8 * S: 50.90
Whisper models: W						USM	54.20	N/A		

MLLM (Gemini) vs Whisper and USM

MM + LLMs improve results over Foundation Models?

-		Task	Metric	Gemini Pro	Gemini Nano-1	Whisper (OpenAI, 2023; Radford et al., 2023)	USM (Zhang et al., 2023)
-	Automatic Speech Recognition	YouTube (en-us)	WER (↓)	4.9%	5.5%	6.5% (v3)	6.2%
<mark>Significant</mark> rt FM in mu	t Improvement ultilingual space	Multilingual Librispeech (en-us) (Pratap et al., 2020)	WER (↓)	4.8%	5.9%	6.2% (v2)	7.0 %
		FLEURS (62 lang) (Conneau et al., 2023)	WER (↓)	7.6%	14.2%	17.6% (v3)	11.8%
		VoxPopuli (14 lang) (Wang et al., 2021)	WER (↓)	9.1%	9.5%	15.9% (v2)	13.4%
	Automatic Speech Translation	CoVoST 2 (21 lang) (Wang et al., 2020)	BLEU (†)	40.1	35.4	29.1 (v2)	30.7

wrt

Modality Generator

Latent Diffusion Models (LDMs)

Sample Pretraining Datasets

• Speech, Speech-Text

 GigaSpeech, AMI, Tedlium, Multilingual Librispeech (m), CommonVoice (m), QASR (dialectal Ar), AISHELL (Chinese), CSJ (Japanese), Microsoft Speech Corpus (Indian Languages) among many others

Music, Music-Text

• Youtube-Music-1M, MusicGen-Synthesis

• Image, Image-Text

 LAION-COCO, MMC4-core-ff, JourneyDB (synthetic data -Midjourney), LAION-2B, LAION-Aesthetics ..

Translation for Low-resource languages!

- AnyInstruct Dataset
 - Generate text-based conversation with added multimodal element
 - Use the modality description for Text to Modality generation

 $\Delta \frown$

• Modality-switching Instruction (MosIT) Dataset

- Modalities: Image, Audio, Video, Text
- Supports complex cross-modal understanding, reasoning along with multimodal content generation.
- Role Design: Human and Machine for various scenarios [more than 100 topics]
 → GPT4 generate conversations (Multi-turn: 3-7 turns, interleaved with different modalities) (Automatic)
- For multimodal, best matched content is added from external resources (Manual, Automatic)

- SpeechInstruct Dataset
 - Speech-Text cross-modal dataset
 - Cross-Modal Instruction
 - Discrete Unit Text Paired data collection
 - Task description generation
 - Instruction Formatting (<task_description, <units>, <transcription>)
 - Chain-of-Modality Instruction
 - Speech instruction generation
 - Instruction formatting

Some Resource

• Surveys

- MM-LLMs: Recent advances in multimodal large language models (Zhang, Duzhen, et al. arXiv 2024)
- Large Multimodal Agents: A Survey. (Xie, Junlin, et al. arXiv 2024)
- Multimodal large language models: A survey. (Wu, Jiayang, et al. BigData 2023)
- A survey on multimodal large language models.(Yin, Shukang, et al. arXiv 2023)
- https://mm-llms.github.io

MM-LLMs

Recent Advances in MultiModal Large Language Models

Thank You

https://llm-low-resource-lang.github.io/